We show that the ability of a restricted Boltzmann machine to reconstruct a random pattern depends on the tail of the hidden prior distribution: hidden priors with strictly sub-Gaussian tails give only a logarithmic loss in pattern retrieval, while an efficient retrieval is much harder with hidden units with strictly super-Gaussian tails; reconstruction with sub-Gaussian hidden prior is regulated by the number of hidden units (as in the Hopfield model). This is proved by localisation estimates for the local minima of the energy function.
翻译:我们显示,限制使用的Boltzmann机器重建随机模式的能力取决于先前暗藏分布的尾部:隐藏前端,严格以Gausian为底部,在图案检索中只会造成对数损失,而使用严格以超级Gausian为底部的隐藏单位,有效检索则困难得多;对隐藏前方的亚高加索的重建由隐藏单位的数量(如Hopfield模型中的数字)来规范。这通过对本地能量功能小范围进行本地化估计来证明。