This paper presents karma mechanisms, a novel approach to the repeated allocation of a scarce resource among competing agents over an infinite time. Examples of such resource allocation problems include deciding which trip requests to serve in a ride-hailing platform during peak demand, granting the right of way in intersections, or admitting internet content to a fast channel for improved quality of service. We study a simplified yet insightful formulation of these problems where at every time two agents from a large population get randomly matched to compete over the resource. The intuitive interpretation of a karma mechanism is "If I give in now, I will be rewarded in the future." Agents compete in an auction-like setting where they bid units of karma, which circulates directly among them and is self-contained in the system. We demonstrate that this allows a society of self-interested agents to achieve high levels of efficiency without resorting to a (possibly problematic) monetary pricing of the resource. We model karma mechanisms as dynamic population games, in which agents have private states - their urgency to acquire the resource and how much karma they have - that vary in time based on their strategic decisions. We adopt the stationary Nash equilibrium as the solution concept and prove its existence. We then analyze the performance at the stationary Nash equilibrium numerically. For the case where the agents have homogeneous preferences, we compare different mechanism design choices which allow to strike trade-offs between efficiency and fairness metrics, showing how it is possible to achieve an efficient and ex-post fair allocation when the agents are future aware. Finally, we test the robustness of the mechanisms against heterogeneity in the urgency processes and the future awareness of the agents and propose remedies to some of the observed phenomena via karma redistribution.


翻译:本文展示了因果机制,这是对竞争代理人在无限时间内反复分配稀缺资源的一种新颖办法。这种资源分配问题的例子包括:决定在高峰需求期间在骑车平台上服务哪些旅行请求,在高峰需求期间在骑马平台上服务,给予交叉路的权利,或允许互联网内容进入快速渠道,以提高服务质量。我们研究这些问题的简化而有洞察力的提法,每次来自大批人口的两名代理人随机匹配以争夺资源。对“卡马机制”的直观解释是“如果我现在给予,我将在将来得到奖励。” 代理人在拍卖式的环境下竞争哪些旅行请求在高峰需求期间在骑马平台上服务,哪些旅行请求在高峰需求高峰时,哪些旅行请求在交接平台中直接分发,哪些是系统自足自足的。我们证明,一个自我感兴趣的代理人的社会可以达到高的效率水平,而不必求助于(可能存在问题的)资源货币定价机制。我们把“卡马马”机制模拟为动态人口游戏,其中的私人国家拥有获得资源的紧迫性,以及他们拥有多大的军费――根据他们的战略决定的不同时间而不同。我们采用“卡马”的股价标准,我们用标准来分析了“标准”的概念。我们用标准来检验了“稳定汇率概念来证明它的存在。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月19日
Arxiv
0+阅读 · 2022年8月19日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员