Person re-identification (re-id) is a pivotal task within an intelligent surveillance pipeline and there exist numerous re-id frameworks that achieve satisfactory performance in challenging benchmarks. However, these systems struggle to generate acceptable results when there are significant differences between the camera views, illumination conditions, or occlusions. This result can be attributed to the deficiency that exists within many recently proposed re-id pipelines where they are predominately driven by appearance-based features and little attention is paid to other auxiliary information that could aid the re-id. In this paper, we systematically review the current State-Of-The-Art (SOTA) methods in both uni-modal and multimodal person re-id. Extending beyond a conceptual framework, we illustrate how the existing SOTA methods can be extended to support these additional auxiliary information and quantitatively evaluate the utility of such auxiliary feature information, ranging from logos printed on the objects carried by the subject or printed on the clothes worn by the subject, through to his or her behavioural trajectories. To the best of our knowledge, this is the first work that explores the fusion of multiple information to generate a more discriminant person descriptor and the principal aim of this paper is to provide a thorough theoretical analysis regarding the implementation of such a framework. In addition, using model interpretation techniques, we validate the contributions from different combinations of the auxiliary information versus the original features that the SOTA person re-id models extract. We outline the limitations of the proposed approaches and propose future research directions that could be pursued to advance the area of multi-modal person re-id.


翻译:在智能监视管道中,重新定位(重新定位)是一项关键任务,而且有许多在挑战性基准方面达到令人满意的业绩的重新定位框架,然而,这些系统在摄像机观点、照明条件或封闭性之间存在巨大差异的情况下,难以产生可接受的结果,其结果可归因于最近提出的许多重新定位管道中存在的缺陷,这些管道主要是外观特征驱动的,很少注意有助于重新定位的其他辅助信息。在本文件中,我们系统地审查单式和多式联运人员重新定位的当前国家-艺术(SOTA)方法。在概念框架之外,我们说明如何扩大现有的SOTA方法,以支持这些额外的辅助信息,并从数量上评价这种辅助性特征信息的效用,从在主题所携带的物体上打印的标志,或印在主题所穿的衣服上打印的标志,到他或她的行为轨迹。我们最了解的是,这是探索多种信息组合的单一模式和先期期方法。我们探索了未来研究模型的组合,以产生更彻底的图像分析为目的,我们用这种模型来提供更精确的图像分析。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
An Overview on Machine Translation Evaluation
Arxiv
14+阅读 · 2022年2月22日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员