This article is a discussion of Zanella and Roberts' paper: Multilevel linear models, gibbs samplers and multigrid decompositions. We consider several extensions in which the multigrid decomposition would bring us interesting insights, including vector hierarchical models, linear mixed effects models and partial centering parametrizations.


翻译:本文讨论Zanella 和 Roberts 的论文: 多级线性模型、 gibbs 采样器和多格分解。 我们考虑一些扩展,其中多格分解会给我们带来有趣的洞察力,包括矢量级模型、线性混合效应模型和部分半中枢等。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年12月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月16日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员