We describe how to approximate the intractable marginal likelihood that arises when fitting generalized linear mixed models. We prove that non-adaptive quadrature approximations yield high error asymptotically in every statistical model satisfying weak regularity conditions. We derive the rate of error incurred when using adaptive quadrature to approximate the marginal likelihood in a broad class of generalized linear mixed models, which includes non-exponential family response and non-Gaussian random effects distributions. We provide an explicit recommendation for how many quadrature points to use, and show that this recommendation recovers and explains many empirical results from published simulation studies and data analyses. Particular attention is paid to models for dependent binary and survival/time-to-event observations. Code to reproduce results in the manuscript is found at https://github.com/awstringer1/glmm-aq-paper-code.
翻译:我们描述如何大致估计在适合通用线性混合模型时产生的难以解决的边际可能性。我们证明,在每一个统计模型中,非适应性二次曲线近似会在满足薄弱的常规性条件的每个统计模型中产生高误差。我们得出在使用适应性二次曲线时发生的误差率,以近似在广泛的一般线性混合模型类别中产生的边际可能性,这些模型包括非穷困家庭反应和非毛利性随机效应分布。我们明确建议要使用多少个二次曲线点,并表明本建议恢复并解释了已公布的模拟研究和数据分析的许多实证结果。我们特别注意依赖性双轨和生存/时间-事件观察的模型。手稿中复制结果的代码见https://github.com/awstringer1/glmm-q-paper-code。