We consider energy stable summation by parts finite difference methods (SBP-FD) for the homogeneous and piecewise homogeneous dynamic beam equation (DBE). Previously the constant coefficient problem has been solved with SBP-FD together with penalty terms (SBP-SAT) to impose boundary conditions. In this work we revisit this problem and compare SBP-SAT to the projection method (SBP-P). We also consider the DBE with discontinuous coefficients and present novel SBP-SAT, SBP-P and hybrid SBP-SAT-P discretizations for imposing interface conditions. Numerical experiments show that all methods considered are similar in terms of accuracy, but that SBP-P can be more computationally efficient (less restrictive time step requirement for explicit time integration methods) for both the constant and piecewise constant coefficient problems.
翻译:我们认为,对单质和单质均匀动态束式等离差法(SBP-FD),能源稳定总和(SBP-FD),以前,常数问题已经与SBP-FD(SBP-SAT)一起解决,同时规定了边界条件的处罚条件(SBP-SAT),在这项工作中,我们重新审视这一问题,将SBP-SAT(SBP-P)与预测方法(SBP-P)相比较。 我们还认为,DBE具有不连续的系数,并提出了新的SBP-SAT、SBP-P(SBP-P)和混合SBP-SAT-SAT-P(SBP-SAT-P)分立法,以强制设定界面条件。 数字实验表明,所有考虑的方法在准确性方面都相似,但SBP-P(SBP)对于常态和片常态系数问题来说,在计算上效率更高(对明确的时间整合方法的限制性时间要求) 。