Change detection (CD) in heterogeneous remote sensing images is a practical and challenging issue for real-life emergencies. In the past decade, the heterogeneous CD problem has significantly benefited from the development of deep neural networks (DNN). However, the data-driven DNNs always perform like a black box where the lack of interpretability limits the trustworthiness and controllability of DNNs in most practical CD applications. As a strong knowledge-driven tool to measure correlation between random variables, Copula theory has been introduced into CD, yet it suffers from non-robust CD performance without manual prior selection for Copula functions. To address the above issues, we propose a knowledge-data-driven heterogeneous CD method (NN-Copula-CD) based on the Copula-guided interpretable neural network. In our NN-Copula-CD, the mathematical characteristics of Copula are designed as the losses to supervise a simple fully connected neural network to learn the correlation between bi-temporal image patches, and then the changed regions are identified via binary classification for the correlation coefficients of all image patch pairs of the bi-temporal images. We conduct in-depth experiments on three datasets with multimodal images (e.g., Optical, SAR, and NIR), where the quantitative results and visualized analysis demonstrate both the effectiveness and interpretability of the proposed NN-Copula-CD.


翻译:遥感图像的异质变化检测是现实生活应急情况下的一个实际且具有挑战性的问题。在过去的十年中,深度神经网络(DNN)的发展在异质CD问题上带来了显著的效益。然而,基于数据驱动的DNNs通常表现为黑盒,缺乏可解释性,限制了DNNs在大多数实际CD应用中的可信度和可控性。Copula理论作为衡量随机变量之间相关性的强有力知识驱动的工具已被引入到CD中,但其存在无需手动选择Copula函数的情况下CD表现不稳定的问题。为了解决以上问题,我们提出了一种基于Copula引导的可解释神经网络的知识数据驱动异质CD方法(NN-Copula-CD)。在我们的NN-Copula-CD中,Copula的数学特性被设计为损失,以监督简单的全连接神经网络来学习双时相图像补丁之间的相关性,然后通过所有图像补丁对的相关系数的二元分类,识别出已变化的区域。我们对三种包含多模式图像(如光学、SAR和NIR)的数据集进行了深入的实验,在其中定量结果和可视化分析中展示了所提出的NN-Copula-CD的有效性和可解释性。

0
下载
关闭预览

相关内容

【Google-BryanLim等】可解释深度学习时序预测
专知会员服务
61+阅读 · 2021年12月19日
专知会员服务
42+阅读 · 2020年12月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Transformers in Remote Sensing: A Survey
Arxiv
25+阅读 · 2022年9月2日
Arxiv
22+阅读 · 2022年3月31日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
16+阅读 · 2021年1月27日
Anomalous Instance Detection in Deep Learning: A Survey
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关论文
Transformers in Remote Sensing: A Survey
Arxiv
25+阅读 · 2022年9月2日
Arxiv
22+阅读 · 2022年3月31日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
16+阅读 · 2021年1月27日
Anomalous Instance Detection in Deep Learning: A Survey
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员