We know the classical public cryptographic algorithms are based on certain NP-hard problems such as the integer factoring in RSA and the discrete logarithm in Diffie-Hellman. They are going to be vulnerable with fault-tolerant quantum computers. We also know that the uncertainty principle for quantum bits or qubits such as quantum key distribution or QKD based on the quantum uncertainty principle offers the information theoretical security. The interesting implication with the paradigm shifts from classical computing to quantum computing is that the NP-hardness used for classical cryptography may shift to the uncertainty principles for quantum cryptography including quantum symmetric encryption, post-quantum cryptography, as well as quantum encryption in phase space for coherent optical communications. This paper would like to explore those so-called generalized uncertainty principles and explain what their implications are for quantum security. We identified three generalized uncertainty principles offering quantum security: non-commutability between permutation gates, non-commutability between the displacement and phase shift operators for coherent states, and the modular Diophantine Equation Problem in general linear algebra for post-quantum cryptography.
翻译:我们知道古典公共加密算法是基于某些NP-硬性问题,如RSA的整数系数和Diffie-Hellman的离散对数法。它们将容易受到不耐错的量子计算机的影响。我们也知道,量子位或QQD的不确定性原则,如量子钥匙分布或基于量子不确定性原则的QKD,提供了信息理论安全。古典计算向量子计算范式转变的有趣含义是,用于古典加密的NP-硬性可能会转向量子加密的不确定原则,包括量子对称加密、后QQantom加密,以及用于连贯光学通信的阶段空间的量子加密。本文希望探讨这些所谓的普遍不确定性原则,并解释它们对量子安全的影响。我们确定了三种普遍的不确定性原则,提供量子安全:调控门之间不可调和调,用于连贯状态的离位和相位转移操作者之间不可调和相容异性,以及用于后方位显性显性显性显性显性显性显性等的分子等。