We develop a new efficient algorithm for the analysis of large-scale time series data. We firstly define rolling averages, derive their analytical properties, and establish their asymptotic distribution. These theoretical results are subsequently exploited to develop an efficient algorithm, called Rollage, for fitting an appropriate AR model to big time series data. When used in conjunction with the Durbin's algorithm, we show that the Rollage algorithm can be used as a criterion to optimally fit ARMA models to big time series data. Empirical experiments on large-scale synthetic time series data support the theoretical results and reveal the efficacy of this new approach, especially when compared to existing methodology.
翻译:我们为分析大型时间序列数据开发了一种新的高效算法。 我们首先定义滚动平均数, 得出其分析属性, 并确立其无症状分布。 这些理论结果随后被用于开发一种高效算法, 叫做 Rollage, 用于将适当的AR 模型与大时间序列数据相匹配。 当与 Durbin 的算法结合使用时, 我们显示滚动算法可以用作一个标准, 使ARMA 模型与大型时间序列数据最适宜匹配。 大规模合成时间序列数据的经验实验支持了理论结果, 并揭示了这一新方法的功效, 特别是在与现有方法比较时 。