Multi-task benchmarks such as GLUE and SuperGLUE have driven great progress of pretraining and transfer learning in Natural Language Processing (NLP). These benchmarks mostly focus on a range of Natural Language Understanding (NLU) tasks, without considering the Natural Language Generation (NLG) models. In this paper, we present the General Language Generation Evaluation (GLGE), a new multi-task benchmark for evaluating the generalization capabilities of NLG models across eight language generation tasks. For each task, we continue to design three subtasks in terms of task difficulty (GLGE-Easy, GLGE-Medium, and GLGE-Hard). This introduces 24 subtasks to comprehensively compare model performance. To encourage research on pretraining and transfer learning on NLG models, we make GLGE publicly available and build a leaderboard with strong baselines including MASS, BART, and ProphetNet (The source code and dataset are publicly available at https://github.com/microsoft/glge).
翻译:GLUE和SuperGLUE等多任务基准推动在自然语言处理(NLP)的预培训和转让学习方面取得了巨大进展。这些基准主要侧重于一系列自然语言理解(NLU)任务,而没有考虑自然语言生成模式。在本文件中,我们介绍了通用语言一代评价(GLGE),这是评估通用语言组模式在八种语言生成任务中的通用能力的新多任务基准。我们继续根据每项任务设计三个任务(GLGE-Easy、GLGE-Medium和GLGEGE-Hard),这为全面比较示范性业绩引入了24个子任务。为了鼓励关于NLG模型的预培训和转让学习的研究,我们公开GLGE,并建立一个具有强有力的基线(包括MASS、BART和先知网络)的主导板(源代码和数据集公布在https://github.com/microft/glge)。