We prove super-polynomial lower bounds for low-depth arithmetic circuits using the shifted partials measure [Gupta-Kamath-Kayal-Saptharishi, CCC 2013], [Kayal, ECCC 2012] and the affine projections of partials measure [Garg-Kayal-Saha, FOCS 2020], [Kayal-Nair-Saha, STACS 2016]. The recent breakthrough work of Limaye, Srinivasan and Tavenas [FOCS 2021] proved these lower bounds by proving lower bounds for low-depth set-multilinear circuits. An interesting aspect of our proof is that it does not require conversion of a circuit to a set-multilinear circuit, nor does it involve a random restriction. We are able to upper bound the measures for homogeneous formulas directly, without going via set-multilinearity. Our lower bounds hold for the iterated matrix multiplication as well as the Nisan-Wigderson design polynomials. We also define a subclass of homogeneous formulas which we call unique parse tree (UPT) formulas, and prove superpolynomial lower bounds for these. This generalizes the superpolynomial lower bounds for regular formulas in [Kayal-Saha-Saptharishi, STOC 2014], [Fournier-Limaye-Malod-Srinivasan, STOC 2014].
翻译:我们用偏移的部分度量[Gupta-Kamath-Kayal-Saptharishi,CCC 2013]、[Kayal,ECCC 2012]和部分度量[Garg-Kayal-Saha,FOCS 2020]、[Kayal-Nair-Saha,STACS 2016]的偏移度预测,证明了低深度算术电路的超极下界限。利马耶、斯里尼瓦桑和塔韦纳斯最近的突破性工作[FOCS 证明了这些较低界限,证明了低深度设置多线性电路(CCC 2013),[Kayal, ECCC 2012] 和部分度量量度测量的偏角值预测[Garg-Kayal-Saha-Saha,FACS 2020],[Kayal-Nacial-Wigersonimation mol-Plonial-Ial-Simal-Supal-Simal-Simal-Supal-Supal-Supal-Supal-Syal-Syal-Supal-Supal-Supal-Supal-Syal-Supal-Syal-Syal-Supal-Syal-Syal-Supal-Smars,我们称这些独特和Smar-Smar-s,我们称这些独特的普通制式的低级公式,我们称独特和低级公式。