Adversarial training has been considered an imperative component for safely deploying neural network-based applications to the real world. To achieve stronger robustness, existing methods primarily focus on how to generate strong attacks by increasing the number of update steps, regularizing the models with the smoothed loss function, and injecting the randomness into the attack. Instead, we analyze the behavior of adversarial training through the lens of response frequency. We empirically discover that adversarial training causes neural networks to have low convergence to high-frequency information, resulting in highly oscillated predictions near each data. To learn high-frequency contents efficiently and effectively, we first prove that a universal phenomenon of frequency principle, i.e., \textit{lower frequencies are learned first}, still holds in adversarial training. Based on that, we propose phase-shifted adversarial training (PhaseAT) in which the model learns high-frequency components by shifting these frequencies to the low-frequency range where the fast convergence occurs. For evaluations, we conduct the experiments on CIFAR-10 and ImageNet with the adaptive attack carefully designed for reliable evaluation. Comprehensive results show that PhaseAT significantly improves the convergence for high-frequency information. This results in improved adversarial robustness by enabling the model to have smoothed predictions near each data.


翻译:Aversari 培训被认为是安全向现实世界部署神经网络应用程序的必要组成部分。为了实现更强的稳健性,现有方法主要侧重于如何通过增加更新步骤的数量、将模型与平滑损失功能正规化和将随机性注入攻击中来产生强烈攻击。相反,我们通过反应频率的镜头分析对抗性培训的行为。我们从经验中发现,对抗性培训导致神经网络与高频信息的趋同程度较低,导致在每数据附近进行高度振荡的预测。为了高效率和高效力地学习高频内容,我们首先证明频率原则的普遍现象,即首先学习到\ textit{低频率},仍然在对抗性培训中进行。在此基础上,我们提议通过将这些频率移到快速趋同的低频范围来学习高频组成部分。我们进行了CIRF-10和图像网的实验,并仔细设计了适应性攻击以进行可靠的评价。全面结果显示,每阶段对准性培训将极大地改进高频数据的趋同性。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
17+阅读 · 2020年9月6日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
专知会员服务
159+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年3月6日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员