We propose a novel Bayesian model framework for discrete ordinal and count data based on conditional transformations of the responses. The conditional transformation function is estimated from the data in conjunction with an a priori chosen reference distribution. For count responses, the resulting transformation model is novel in the sense that it is a Bayesian fully parametric yet distribution-free approach that can additionally account for excess zeros with additive transformation function specifications. For ordinal categoric responses, our cumulative link transformation model allows the inclusion of linear and nonlinear covariate effects that can additionally be made category-specific, resulting in (non-)proportional odds or hazards models and more, depending on the choice of the reference distribution. Inference is conducted by a generic modular Markov chain Monte Carlo algorithm where multivariate Gaussian priors enforce specific properties such as smoothness on the functional effects. To illustrate the versatility of Bayesian discrete conditional transformation models, applications to counts of patent citations in the presence of excess zeros and on treating forest health categories in a discrete partial proportional odds model are presented.
翻译:我们提出了一个新的贝叶斯模型框架,用于根据对答复的有条件变换提供离散或计数数据。有条件变换功能根据数据与事先选定的参考分布一起估算。对于计数响应,由此产生的变换模式是新颖的,因为它是巴伊西亚完全对准但无分布式的处理办法,可以额外计入添加性变异功能规格的超零。对于交替型变异反应,我们的累积链接变换模型允许包括线性和非线性共变效应,这些效应可以额外按类别具体设定,导致(非)比例概率或危害模型,等等,这取决于参照分布的选择。推论是由通用模块式的马尔科夫链 Monte Carlo 算法进行的,该算法是多变制高斯先前对功能效应的光滑等具体属性。为了说明巴伊亚离离散条件变异变模型的多功能性,介绍了在存在超重零的情况下对专利引用进行计算的应用,以及在独立部分成比例变差模型中对森林健康类别进行处理的应用。