We propose a decentralized algorithm to collaboratively transport arbitrarily shaped objects using a swarm of robots. Our approach starts with a task allocation phase that sequentially distributes locations around the object to be transported starting from a seed robot that makes first contact with the object. Our approach does not require previous knowledge of the shape of the object to ensure caging. To push the object to a goal location, we estimate the robots required to apply force on the object based on the angular difference between the target and the object. During transport, the robots follow a sequence of intermediate goal locations specifying the required pose of the object at that location. We evaluate our approach in a physics-based simulator with up to 100 robots, using three generic paths. Experiments using a group of KheperaIV robots demonstrate the effectiveness of our approach in a real setting. Keywords: Collaborative transport, Task Allocation, Caging, Robot Swarms
翻译:我们建议一种分散的算法, 使用一大批机器人来协同运输任意形状的物体。 我们的方法首先是一个任务分配阶段, 任务分配阶段, 任务分配阶段将物体周围的位置按顺序分布, 从种子机器人开始, 与该物体初次接触。 我们的方法并不要求事先知道该物体的形状以确保捕捉。 要将该物体推向一个目标位置, 我们根据目标与对象之间的角差, 估计需要机器人对物体施压。 在运输过程中, 机器人遵循一个中间目标位置序列, 指定该物体所需的形状 。 我们用三种通用路径来评估以物理为基础的模拟器( 最多100个机器人的模拟器) 中我们的方法。 使用KheperaiIV 机器人组的实验展示了我们方法在真实环境中的有效性 。 关键词: 协作运输、 任务分配、 定位、 机器人冲浪 。