Past work on optimizing fabrication plans given a carpentry design can provide Pareto-optimal plans trading off between material waste, fabrication time, precision, and other considerations. However, when developing fabrication plans, experts rarely restrict to a single design, instead considering families of design variations, sometimes adjusting designs to simplify fabrication. Jointly exploring the design and fabrication plan spaces for each design is intractable using current techniques. We present a new approach to jointly optimize design and fabrication plans for carpentered objects. To make this bi-level optimization tractable, we adapt recent work from program synthesis based on equality graphs (e-graphs), which encode sets of equivalent programs. Our insight is that subproblems within our bi-level problem share significant substructures. By representing both designs and fabrication plans in a new bag of parts(BOP) e-graph, we amortize the cost of optimizing design components shared among multiple candidates. Even using BOP e-graphs, the optimization space grows quickly in practice. Hence, we also show how a feedback-guided search strategy dubbed Iterative Contraction and Expansion on E-graphs (ICEE) can keep the size of the e-graph manage-able and direct the search toward promising candidates. We illustrate the advantages of our pipeline through examples from the carpentry domain.


翻译:过去关于优化制造计划的工作,给木工设计提供木工设计,可以提供Pareto-最佳计划,在材料废物、制造时间、精度和其他考虑之间进行交换。然而,在制订制造计划时,专家很少局限于单一设计,而没有考虑到设计变化的类别,有时是调整设计以简化制造。联合探索每个设计的设计与制造计划空间,使用当前技术很难解决问题。我们提出了一个新的方法,以共同优化木工物体的设计和制造计划。为了使这一双级优化可以推广,我们从基于平等图表(e-graphs)的程式合成(e-graphs)中调整了最近的工作,该图将相同的程序编码。我们的见解是,我们双级问题中的子问题共享了重要的子结构。通过在新的部件(BOP)电子绘图包中代表设计和制造计划,我们把优化设计中多个候选人共享的设计组成部分的成本集中起来。即使使用BOPe-graph,优化空间在实践中也迅速增长。因此,我们还展示了一种反馈指导的搜索策略,即扩展和扩展电子地图上的扩展,我们通过直接搜索(ICE)候选人的地图展示了我们直接搜索优势。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月30日
Arxiv
0+阅读 · 2021年9月28日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员