Tabular data are ubiquitous for the widespread applications of tables and hence have attracted the attention of researchers to extract underlying information. One of the critical problems in mining tabular data is how to understand their inherent semantic structures automatically. Existing studies typically adopt Convolutional Neural Network (CNN) to model the spatial information of tabular structures yet ignore more diverse relational information between cells, such as the hierarchical and paratactic relationships. To simultaneously extract spatial and relational information from tables, we propose a novel neural network architecture, TabularNet. The spatial encoder of TabularNet utilizes the row/column-level Pooling and the Bidirectional Gated Recurrent Unit (Bi-GRU) to capture statistical information and local positional correlation, respectively. For relational information, we design a new graph construction method based on the WordNet tree and adopt a Graph Convolutional Network (GCN) based encoder that focuses on the hierarchical and paratactic relationships between cells. Our neural network architecture can be a unified neural backbone for different understanding tasks and utilized in a multitask scenario. We conduct extensive experiments on three classification tasks with two real-world spreadsheet data sets, and the results demonstrate the effectiveness of our proposed TabularNet over state-of-the-art baselines.
翻译:图表数据对于表格的广泛应用是无处不在的,因此吸引了研究人员的注意力以提取基本信息。采矿表格数据的一个关键问题是如何自动理解其固有的语义结构。现有研究通常采用进化神经网络(CNN)来模拟表格结构的空间信息,但却忽视了各单元格之间更为多样化的关系信息,例如等级和外观关系。为了同时从表格中提取空间和关联信息,我们提议建立一个新型的神经网络结构,TabularNet。TabolarNet的空间编码器利用行/柱级集合和双向Greddical 常规单元(Bi-GRU)分别收集统计信息和地方定位关系。关于关系信息,我们根据WordNet树设计了新的图形构建方法,并采用以各单元格之间等级和方位关系为重点的图表革命网络。我们的神经网络结构可以成为不同理解任务的统一神经骨干,并用于多塔式情景中。我们用两种真实数据序列进行广泛的实验,我们用两个真实世界的基线展示了我们的拟议数据格式。