Supervised Causal Learning (SCL) aims to learn causal relations from observational data by accessing previously seen datasets associated with ground truth causal relations. This paper presents a first attempt at addressing a fundamental question: What are the benefits from supervision and how does it benefit? Starting from seeing that SCL is not better than random guessing if the learning target is non-identifiable a priori, we propose a two-phase paradigm for SCL by explicitly considering structure identifiability. Following this paradigm, we tackle the problem of SCL on discrete data and propose ML4C. The core of ML4C is a binary classifier with a novel learning target: it classifies whether an Unshielded Triple (UT) is a v-structure or not. Specifically, starting from an input dataset with the corresponding skeleton provided, ML4C orients each UT once it is classified as a v-structure. These v-structures are together used to construct the final output. To address the fundamental question of SCL, we propose a principled method for ML4C featurization: we exploit the vicinity of a given UT (i.e., the neighbors of UT in skeleton), and derive features by considering the conditional dependencies and structural entanglement within the vicinity. We further prove that ML4C is asymptotically correct. Last but foremost, thorough experiments conducted on benchmark datasets demonstrate that ML4C remarkably outperforms other state-of-the-art algorithms in terms of accuracy, reliability, robustness and tolerance. In summary, ML4C shows promising results on validating the effectiveness of supervision for causal learning. Our codes are publicly available at https://github.com/microsoft/ML4C.


翻译:有监督的因果学习(SCL)旨在通过访问先前见过的与地面真实因果关系相关的数据集来从观测数据中学习因果关系。本文首次尝试回答一个基本问题:监督有什么好处,它如何受益?我们看到,如果学习目标先验不可识别,则SCL不比随机猜测更好,基于此,我们提出了一种两阶段SCL范例,明确地考虑了结构可识别性。遵循这个范例,我们解决了离散数据上的SCL问题,并提出了ML4C。ML4C的核心是一个二元分类器,其具有新颖的学习目标:它分类一个未屏蔽三元组(UT)是否为v-结构。具体而言,从提供相应骨架的输入数据集开始,ML4C在将UT分类为v-结构后定向每个UT。这些v-结构一起用于构建最终输出。为了解决SCL的基本问题,我们提出了一种ML4C特征化的原则性方法:利用给定UT的邻近性(即UT在 Skeleton 中的邻居),通过考虑邻近区域内的条件依赖和结构纠结来导出特征。我们进一步证明,ML4C渐近正确。最后但最重要的是,对基准数据集进行的彻底实验表明,ML4C在准确性、可靠性、鲁棒性和容忍度方面显著优于其他最先进的算法。总之,ML4C展示了验证监督因果学习有效性的有希望的结果。我们的源代码公开可用于https://github.com/microsoft/ML4C。

0
下载
关闭预览

相关内容

【ICML2022】熵因果推理:图的可辨识性
专知会员服务
27+阅读 · 2022年8月6日
专知会员服务
39+阅读 · 2021年8月12日
专知会员服务
50+阅读 · 2021年8月8日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
18+阅读 · 2020年11月6日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
22+阅读 · 2019年11月24日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员