We present a novel point-based, differentiable neural rendering pipeline for scene refinement and novel view synthesis. The input are an initial estimate of the point cloud and the camera parameters. The output are synthesized images from arbitrary camera poses. The point cloud rendering is performed by a differentiable renderer using multi-resolution one-pixel point rasterization. Spatial gradients of the discrete rasterization are approximated by the novel concept of ghost geometry. After rendering, the neural image pyramid is passed through a deep neural network for shading calculations and hole-filling. A differentiable, physically-based tonemapper then converts the intermediate output to the target image. Since all stages of the pipeline are differentiable, we optimize all of the scene's parameters i.e. camera model, camera pose, point position, point color, environment map, rendering network weights, vignetting, camera response function, per image exposure, and per image white balance. We show that our system is able to synthesize sharper and more consistent novel views than existing approaches because the initial reconstruction is refined during training. The efficient one-pixel point rasterization allows us to use arbitrary camera models and display scenes with well over 100M points in real time.
翻译:我们提出了一个基于点的、不同的神经化管道,供现场改进和新颖的视图合成。输入是对点云和相机参数的初步估计。输出是来自任意摄像头配置的合成图像。点云化是由使用多分辨率的单像点光化的可辨别成像仪进行的。离散光谱的空间梯度近似于新颖的幽灵几何概念。形成后,神经图像金字塔通过一个深层神经网络传递,用于阴影计算和填补洞。一个不同、基于物理的调音器,然后将中间输出转换成目标图像。由于管道的所有阶段都是不同的,我们优化了现场的所有参数,即摄影机模型、照相机姿势、点位置、点颜色、环境地图、网络重量、图像曝光、相机反应功能、每个图像曝光和每个图像白色平衡。我们显示,我们的系统能够合成比现有方法更加清晰和更加一致的新视角,因为最初的重建是在培训中进行改进的。由于最初的重建,我们优化了管道的所有阶段,我们优化了现场的所有参数,例如摄影模型,允许在任意的图像上使用。