The sequence of moments of a vector-valued random variable can characterize its law. We study the analogous problem for path-valued random variables, that is stochastic processes, by using so-called robust signature moments. This allows us to derive a metric of maximum mean discrepancy type for laws of stochastic processes and study the topology it induces on the space of laws of stochastic processes. This metric can be kernelized using the signature kernel which allows to efficiently compute it. As an application, we provide a non-parametric two-sample hypothesis test for laws of stochastic processes.
翻译:矢量估量随机变量的时间序列可以描述它的法律特征。 我们通过使用所谓的稳健的签名时间来研究路径估值随机变量的类似问题, 也就是随机过程。 这使我们能够为随机过程的法律得出一个最大平均值差异类型的衡量标准, 并研究它给随机过程法律空间带来的地形学。 这个指标可以使用能够有效计算它的签名内核来内核。 作为应用, 我们为随机过程的法律提供非参数的两样假设测试。