Gaussian process models typically contain finite dimensional parameters in the covariance function that need to be estimated from the data. We study the Bayesian fixed-domain asymptotics for the covariance parameters in a universal kriging model with an isotropic Matern covariance function, which has many applications in spatial statistics. We show that when the dimension of domain is less than or equal to three, the joint posterior distribution of the microergodic parameter and the range parameter can be factored independently into the product of their marginal posteriors under fixed-domain asymptotics. The posterior of the microergodic parameter is asymptotically close in total variation distance to a normal distribution with shrinking variance, while the posterior distribution of the range parameter does not converge to any point mass distribution in general. Our theory allows an unbounded prior support for the range parameter and flexible designs of sampling points. We further study the asymptotic efficiency and convergence rates in posterior prediction for the Bayesian kriging predictor with covariance parameters randomly drawn from their posterior distribution. In the special case of one-dimensional Ornstein-Uhlenbeck process, we derive explicitly the limiting posterior of the range parameter and the posterior convergence rate for asymptotic efficiency in posterior prediction. We verify these asymptotic results in numerical experiments.
翻译:Gausian 进程模型通常含有需要根据数据估算的共变函数中的有限维度参数。 我们用一个通用的千里格模型研究巴耶西亚固定场域参数的常变参数,该模型具有一个等离子母体共变函数,在空间统计中有许多应用。 我们显示,当域的尺寸小于或等于3时, 微角参数和范围参数的联合后端分布可以独立地计入其边际后端的后端参数的产物中。 微格参数的后端参数的后端参数在总变异性距离至正常分布和缩小差异的正常分布之间处于静态状态, 而范围参数的后端分布不会与一般的任何点质量分布相趋近。 我们的理论允许对范围参数和抽样点的灵活设计提供无限制的前端支持。 我们进一步研究Bayesian 后端预测中的静态效率和聚合率, 其特殊的可变性参数在精确度后端的后端值中, 以精确的后端值参数排序范围 。