We consider the maximization of a submodular objective function $f:2^U\to\mathbb{R}_{\geq 0}$, where the objective $f$ is not accessed as a value oracle but instead subject to noisy queries. We introduce a versatile adaptive sampling procedure called which determines whether the marginal gain of the function $f$ is approximately above or below an input threshold with high probability in as few noisy samples as possible. Using the sampling procedure as a subroutine, we propose sample efficient algorithms for monotone submodular maximization with cardinality and matroid constraints, as well as unconstrained non-monotone submodular maximization. The proposed algorithms achieve approximation guarantees arbitrarily close to those of the standard value oracle setting. We further provide an experimental evaluation on real instances of submodular maximization and demonstrate the sample efficiency of our proposed algorithm relative to alternative approaches.
翻译:暂无翻译