Solid texture synthesis (STS), as an effective way to extend 2D exemplar to a 3D solid volume, exhibits advantages in numerous application domains. However, existing methods generally synthesize solid texture with specific features, which may result in the failure of capturing diversified textural information. In this paper, we propose a novel generative adversarial nets-based approach (STS-GAN) to hierarchically learn solid texture with a feature-free nature. Our multi-scale discriminators evaluate the similarity between patch from exemplar and slice from the generated volume, promoting the generator to synthesize realistic solid textures. Experimental results demonstrate that the proposed method can generate high-quality solid textures with similar visual characteristics to the exemplar.
翻译:固体质素合成(STS)是将2D例样卷扩展至3D种固体体积的一种有效方法,它在许多应用领域都具有优势,然而,现有方法通常将固态质体与具体特征合成,这可能导致无法捕捉到多样化的质谱信息。在本文中,我们建议采用新型的基因化对抗网基方法(STS-GAN),在等级上学习无特征的固态质质体。我们的多尺度歧视者评估了从原体体体积到切片之间的相似性,促进生成者合成现实的固态质质质。实验结果表明,拟议方法可以产生与原体相近的高质量固质质素。