We propose a framework for planning in unknown dynamic environments with probabilistic safety guarantees using conformal prediction. Particularly, we design a model predictive controller (MPC) that uses i) trajectory predictions of the dynamic environment, and ii) prediction regions quantifying the uncertainty of the predictions. To obtain prediction regions, we use conformal prediction, a statistical tool for uncertainty quantification, that requires availability of offline trajectory data - a reasonable assumption in many applications such as autonomous driving. The prediction regions are valid, i.e., they hold with a user-defined probability, so that the MPC is provably safe. We illustrate the results in the self-driving car simulator CARLA at a pedestrian-filled intersection. The strength of our approach is compatibility with state of the art trajectory predictors, e.g., RNNs and LSTMs, while making no assumptions on the underlying trajectory-generating distribution. To the best of our knowledge, these are the first results that provide valid safety guarantees in such a setting.
翻译:我们提出了一个框架,用于在未知的动态环境中进行规划,并使用符合逻辑的预测来保证安全。特别是,我们设计了一个模型预测控制器(MPC),使用动态环境的轨迹预测,以及预测区域,量化预测的不确定性。为了获得预测区域,我们使用一致预测,这是一个用于不确定性量化的统计工具,需要提供离线轨道数据,这是自主驾驶等许多应用中的合理假设。预测区域是有效的,即它们具有用户定义的概率,因此MPC是安全的。我们用行人路交界处的自动驾驶汽车模拟CARLA的结果加以说明。我们的方法的优点在于与最新轨迹预测器(如RNNS和LSTMS)的兼容性,而没有假设基本轨迹分布。据我们所知,这些是这种环境下提供有效安全保障的第一个结果。