In this paper, we view a policy or plan as a transition system over a space of information states that reflect a robot's or other observer's perspective based on limited sensing, memory, computation, and actuation. Regardless of whether policies are obtained by learning algorithms, planning algorithms, or human insight, we want to know the limits of feasibility for given robot hardware and tasks. Toward the quest to find the best policies, we establish in a general setting that minimal information transition systems (ITSs) exist up to reasonable equivalence assumptions, and are unique under some general conditions. We then apply the theory to generate new insights into several problems, including optimal sensor fusion/filtering, solving basic planning tasks, and finding minimal representations for feasible policies.
翻译:在本文中,我们认为一项政策或计划是信息空间的过渡系统,它反映了机器人或其他观察者基于有限感测、记忆、计算和激活的观点。不管政策是学习算法、规划算法还是人类洞察力获得的,我们想知道给定的机器人硬件和任务的可行性限度。为了寻找最佳政策,我们在一般情况下确定信息过渡系统(ITS)只有合理的等值假设,在某些一般条件下是独一无二的。然后我们运用这一理论来对一些问题产生新的洞察力,包括最佳传感器集聚/过滤、解决基本规划任务以及找到可行政策的最低代表。