The reach of a set $M \subset \mathbb R^d$, also known as condition number when $M$ is a manifold, was introduced by Federer in 1959. The reach is a central concept in geometric measure theory, set estimation, manifold learning, among others areas. We introduce a universally consistent estimate of the reach, just assuming that the reach is positive. Under an additional assumption we provide rates of convergence. We also show that it is not possible to determine, based on a finite sample, if the reach of the support of a density is zero or not. We provide a small simulation study and a bias correction method for the case when $M$ is a manifold.
翻译:Federer于1959年引入了一套 $M \ subset \ mathbb \ mathb R ⁇ d$, 也称条件号, 条件号是 $M 是 方块, 由Federerer 于1959年引入。 其范围是几何计量理论、 设定估算、 多重学习, 以及其它领域的中心概念。 我们引入了对范围的普遍一致估计, 只是假设其范围是正的。 根据另外一种假设, 我们提供了趋同率。 我们还表明, 无法根据有限的样本来确定密度支持的覆盖范围是否为零。 我们为当$是方块时, 我们提供了一个小的模拟研究和偏差纠正方法 。