Numerous real-world applications involve the filtering problem: one aims to sequentially estimate the states of a (stochastic) dynamical system from incomplete, indirect, and noisy observations over time to forecast and control the underlying system. Examples can be found in econometrics, meteorology, robotics, bioinformatics, and beyond. In addition to the filtering problem, it is often of interest to estimate some parameters that govern the evolution of the system. Both the filtering and the parameter estimation can be naturally formalized under the Bayesian framework. However, the Bayesian solution poses some significant challenges. For example, the most widely used particle filters can suffer from particle degeneracy and the more robust ensemble Kalman filters rely on the rather restrictive Gaussian assumptions. Exploiting the interplay between the low-rank tensor structure (tensor train) and Markov property of the filtering problem, we present a new approach for tackling Bayesian filtering and parameter estimation altogether. We also explore the preconditioning method to enhance the tensor-train approximation power. Our approach aims at exact Bayesian solutions and does not suffer from particle degeneracy.


翻译:无数实际应用都涉及过滤问题:一个目标是从不完全、间接和噪音的观测中按顺序估计一个(随机)动态系统的状况,从不完全、间接和长时间的紧张观测到预测和控制基础系统。例子可见于计量经济学、气象学、机器人学、生物信息学等等。除了过滤问题外,估计一些参数指导系统演化,往往令人感兴趣。过滤和参数估计可以在巴耶斯框架下自然地正规化。然而,贝叶斯式的解决方案带来了一些重大挑战。例如,最广泛使用的粒子过滤器可能因粒子退化而受害,而更强大的通灵的卡尔曼过滤器则依赖于相当严格的高斯假设。利用低调结构(电压列车)和马尔科夫的过滤特性之间的相互作用,我们提出了一种处理贝叶斯式过滤和参数估计的新方法。我们还探索了加强高压调近似力的前提条件方法。我们的方法的目标是精确的巴伊斯近方解决方案,并且没有受到粒子的损害。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月14日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员