Numerous real-world applications involve the filtering problem: one aims to sequentially estimate the states of a (stochastic) dynamical system from incomplete, indirect, and noisy observations over time to forecast and control the underlying system. Examples can be found in econometrics, meteorology, robotics, bioinformatics, and beyond. In addition to the filtering problem, it is often of interest to estimate some parameters that govern the evolution of the system. Both the filtering and the parameter estimation can be naturally formalized under the Bayesian framework. However, the Bayesian solution poses some significant challenges. For example, the most widely used particle filters can suffer from particle degeneracy and the more robust ensemble Kalman filters rely on the rather restrictive Gaussian assumptions. Exploiting the interplay between the low-rank tensor structure (tensor train) and Markov property of the filtering problem, we present a new approach for tackling Bayesian filtering and parameter estimation altogether. We also explore the preconditioning method to enhance the tensor-train approximation power. Our approach aims at exact Bayesian solutions and does not suffer from particle degeneracy.
翻译:无数实际应用都涉及过滤问题:一个目标是从不完全、间接和噪音的观测中按顺序估计一个(随机)动态系统的状况,从不完全、间接和长时间的紧张观测到预测和控制基础系统。例子可见于计量经济学、气象学、机器人学、生物信息学等等。除了过滤问题外,估计一些参数指导系统演化,往往令人感兴趣。过滤和参数估计可以在巴耶斯框架下自然地正规化。然而,贝叶斯式的解决方案带来了一些重大挑战。例如,最广泛使用的粒子过滤器可能因粒子退化而受害,而更强大的通灵的卡尔曼过滤器则依赖于相当严格的高斯假设。利用低调结构(电压列车)和马尔科夫的过滤特性之间的相互作用,我们提出了一种处理贝叶斯式过滤和参数估计的新方法。我们还探索了加强高压调近似力的前提条件方法。我们的方法的目标是精确的巴伊斯近方解决方案,并且没有受到粒子的损害。