Communication over a classical multiple-access channel (MAC) with entanglement resources is considered, whereby two transmitters share entanglement resources a priori before communication begins. Leditzki et al. (2020) presented an example of a classical MAC, defined in terms of a pseudo telepathy game, such that the sum rate with entangled transmitters is strictly higher than the best achievable sum rate without such resources. Here, we derive a full characterization of the capacity region for the general MAC with entangled transmitters, and show that the previous result can be obtained as a special case. A single-letter formula is established involving auxiliary variables and ancillas of finite dimensions. This, in turn, leads to a sufficient entanglement rate to achieve the rate region.
翻译:考虑在经典多路访问信道(MAC)上使用纠缠资源进行通信,在通信开始之前,两个发射机共享纠缠资源。Leditzki等人(2020)给出了一个伪电报游戏定义的经典MAC示例,使用纠缠发射机的总速率严格高于没有这种资源时的最佳可行总速率。在此处,我们推导了具有纠缠发射机的一般MAC的容量区域全面解,证明了之前的结果可以作为特例获得。建立了涉及有限维辅助变量和辅助量子比特的单字母公式。这反过来又导致了实现速率区域的足够纠缠率。