Recent years have witnessed an increasing interest in the correspondence between infinitely wide networks and Gaussian processes. Despite the effectiveness and elegance of the current neural network Gaussian process theory, to the best of our knowledge, all the neural network Gaussian processes are essentially induced by increasing width. However, in the era of deep learning, what concerns us more regarding a neural network is its depth as well as how depth impacts the behaviors of a network. Inspired by a width-depth symmetry consideration, we use a shortcut network to show that increasing the depth of a neural network can also give rise to a Gaussian process, which is a valuable addition to the existing theory and contributes to revealing the true picture of deep learning. Beyond the proposed Gaussian process by depth, we theoretically characterize its uniform tightness property and the smallest eigenvalue of its associated kernel. These characterizations can not only enhance our understanding of the proposed depth-induced Gaussian processes, but also pave the way for future applications. Lastly, we examine the performance of the proposed Gaussian process by regression experiments on two real-world data sets.


翻译:近些年来,人们对无限宽广的网络和高斯进程之间的对应关系越来越感兴趣。尽管目前神经网络高斯过程理论的效力和优雅,但根据我们的知识,所有高斯过程基本上都是由日益宽广的诱发的。然而,在深层次学习的时代,我们对神经网络更为关切的是其深度,以及其深度如何影响网络的行为。在宽度深度对称考虑的启发下,我们使用捷径网络来表明,增加神经网络的深度也可以产生高斯过程,这是对现有理论的宝贵补充,有助于揭示深层学习的真实情况。除了提议的高斯过程外,我们从理论上从深度来描述其统一的紧凑性特性及其相关内核最小的密封值。这些特征不仅能够增进我们对拟议的深度诱导的高斯过程的理解,而且还为今后的应用铺平了道路。最后,我们审视了两个现实世界数据集的回归实验所拟议的高斯过程的绩效。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
计算机经典算法回顾与展望——机器学习与数据挖掘
中国计算机学会
5+阅读 · 2019年10月11日
NLP is hard! 自然语言处理太难了系列
AINLP
8+阅读 · 2019年1月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月18日
Arxiv
9+阅读 · 2021年10月5日
Hyperbolic Graph Attention Network
Arxiv
6+阅读 · 2019年12月6日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
计算机经典算法回顾与展望——机器学习与数据挖掘
中国计算机学会
5+阅读 · 2019年10月11日
NLP is hard! 自然语言处理太难了系列
AINLP
8+阅读 · 2019年1月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员