Arguably, unsupervised learning plays a crucial role in the majority of algorithms for processing brain imaging. A recently introduced unsupervised approach Deep InfoMax (DIM) is a promising tool for exploring brain structure in a flexible non-linear way. In this paper, we investigate the use of variants of DIM in a setting of progression to Alzheimer's disease in comparison with supervised AlexNet and ResNet inspired convolutional neural networks. As a benchmark, we use a classification task between four groups: patients with stable, and progressive mild cognitive impairment (MCI), with Alzheimer's disease, and healthy controls. Our dataset is comprised of 828 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our experiments highlight encouraging evidence of the high potential utility of DIM in future neuroimaging studies.
翻译:可以说,未经监督的学习在大部分脑成像处理算法中发挥着关键作用。最近引入的未经监督的深信息Max(DIM)方法是一个很有希望的工具,可以以灵活的非线性方式探索大脑结构。在本文中,我们调查了在阿尔茨海默氏病的发病过程中使用DIM变量的情况,与受监督的AlexNet和ResNet激励的共生神经网络相比。作为一个基准,我们使用四个组的分类任务:具有稳定且逐渐轻微认知缺陷的病人(MCI),有阿尔茨海默氏病,以及健康控制。我们的数据集由来自阿尔茨海默氏病神经造影倡议(ADNI)数据库的828个学科组成。我们的实验凸显了未来神经成像研究中DIM具有高度潜在作用的令人鼓舞的证据。