Software testing has often to be done under severe pressure due to limited resources and a challenging time schedule facing the demand to assure the fulfillment of the software requirements. In addition, testing should unveil those software defects that harm the mission-critical functions of the software. Risk-based testing uses risk (re-)assessments to steer all phases of the test process in order to optimize testing efforts and limit risks of the software-based system. Due to its importance and high practical relevance several risk-based testing approaches were proposed in academia and industry. This paper presents a taxonomy of risk-based testing providing a framework to understand, categorize, assess, and compare risk-based testing approaches to support their selection and tailoring for specific purposes. The taxonomy is aligned with the consideration of risks in all phases of the test process and consists of the top-level classes risk drivers, risk assessment, and risk-based test process. The taxonomy of risk-based testing has been developed by analyzing the work presented in available publications on risk-based testing. Afterwards, it has been applied to the work on risk-based testing presented in this special section of the International Journal on Software Tools for Technology Transfer.


翻译:由于资源有限,而且需要确保满足软件要求,因此,软件测试往往在压力很大的情况下进行。此外,测试应揭露那些损害软件任务关键功能的软件缺陷。基于风险的测试使用风险(再)评估来指导测试过程的所有阶段,以便优化测试努力并限制软件系统的风险。由于风险测试方法的重要性和高度实用相关性,在学术界和工业界提出了若干基于风险的测试方法。本文件介绍了基于风险的测试分类,提供了一个框架,用以理解、分类、评估和比较基于风险的测试方法,以支持其选择和定制特定目的。分类学与测试过程所有阶段的风险考虑相一致,由顶级风险驱动因素、风险评估和基于风险的测试程序组成。基于风险的测试的分类学是通过分析现有出版物关于基于风险的测试的工作而形成的。随后,它被用于《国际技术转让软件工具杂志》这一特别章节提出的基于风险的测试工作。

0
下载
关闭预览

相关内容

分类学是分类的实践和科学。Wikipedia类别说明了一种分类法,可以通过自动方式提取Wikipedia类别的完整分类法。截至2009年,已经证明,可以使用人工构建的分类法(例如像WordNet这样的计算词典的分类法)来改进和重组Wikipedia类别分类法。 从广义上讲,分类法还适用于除父子层次结构以外的关系方案,例如网络结构。然后分类法可能包括有多父母的单身孩子,例如,“汽车”可能与父母双方一起出现“车辆”和“钢结构”;但是对某些人而言,这仅意味着“汽车”是几种不同分类法的一部分。分类法也可能只是将事物组织成组,或者是按字母顺序排列的列表;但是在这里,术语词汇更合适。在知识管理中的当前用法中,分类法被认为比本体论窄,因为本体论应用了各种各样的关系类型。 在数学上,分层分类法是给定对象集的分类树结构。该结构的顶部是适用于所有对象的单个分类,即根节点。此根下的节点是更具体的分类,适用于总分类对象集的子集。推理的进展从一般到更具体。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Generative Adversarial Networks: A Survey and Taxonomy
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
6+阅读 · 2017年12月2日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员