We present two novel optimizations that accelerate clock-based spiking neural network (SNN) simulators. The first one targets spike timing dependent plasticity (STDP). It combines lazy- with event-driven plasticity and efficiently facilitates the computation of pre- and post-synaptic spikes using bitfields and integer intrinsics. It offers higher bandwidth than event-driven plasticity alone and achieves a 1.5x-2x speedup over our closest competitor. The second optimization targets spike delivery. We partition our graph representation in a way that bounds the number of neurons that need be updated at any given time which allows us to perform said update in shared memory instead of global memory. This is 2x-2.5x faster than our closest competitor. Both optimizations represent the final evolutionary stages of years of iteration on STDP and spike delivery inside "Spice" (/spaIk/), our state of the art SNN simulator. The proposed optimizations are not exclusive to our graph representation or pipeline but are applicable to a multitude of simulator designs. We evaluate our performance on three well-established models and compare ourselves against three other state of the art simulators.
翻译:我们展示了两个新颖的优化, 加速了基于时钟的跳动神经网络模拟器( SNN) 。 第一个是时间依赖性可塑性( STDP) 。 它将懒惰与事件驱动的可塑性结合起来, 并有效地便利了使用比特字段和整数内在的合成前和后合成峰值的计算。 它提供比事件驱动的可塑性更高的带宽度, 并且仅能达到1.5x-2x速度, 超过我们最接近的竞技者。 第二个优化目标会达到峰值。 我们将我们的图形代表制分隔成, 从而将需要随时更新的神经元数量绑在一起, 从而使我们能够在共享记忆中进行上述更新, 而不是全球记忆。 这是比我们最接近的竞争者更快的 2x- 2.5x 。 这两种优化都代表着STDP 多年循环的最后演进阶段, 以及 “ spice”(/ spaIk/) 我们最接近的艺术 SNN 模拟器状态。 。 拟议的优化不仅限于我们的图形代表或管道, 但它适用于众多的神经模拟师设计。 我们对照了三个州模型的绩效, 比较了我们的三个模型。