We give new characterizations of core imputations for the following games: \begin{enumerate} \item The assignment game. \item Concurrent games, i.e., general graph matching games having non-empty core. \item The unconstrained bipartite $b$-matching game (edges can be matched multiple times). \item The constrained bipartite $b$-matching game (edges can be matched at most once). \end{enumerate} \bigskip The classic paper of Shapley and Shubik \cite{Shapley1971assignment} showed that core imputations of the assignment game are precisely optimal solutions to the dual of the LP-relaxation of the game. Building on this, Deng et al. \cite{Deng1999algorithms} gave a general framework which yields analogous characterizations for several fundamental combinatorial games. Interestingly enough, their framework does not apply to the last two games stated above. In turn, we show that some of the core imputations of these games correspond to optimal dual solutions and others do not. This leads to the tantalizing question of understanding the origins of the latter. We also present new characterizations of the profits accrued by agents and teams in core imputations of the first two games. Our characterization for the first game is stronger than that for the second; the underlying reason is that the characterization of vertices of the Birkhoff polytope is stronger than that of the Balinski polytope.
翻译:我们给出了以下游戏核心估算的新特性 :\ begin{ nummate}\ account 任务游戏 。\ account 同时游戏 。\ account 同时游戏, 即普通图形匹配游戏的非空核心游戏 。\ actume 未受限制的双边美元对齐游戏 (可以多次匹配 ) 。\ acite 受限制的双边美元对齐游戏( 最多可以匹配一次 ) 。\ end{ ecountate}\ bigskip 更强的游戏 。\ bigskipic 经典纸 和 Shubik\ cite Shapley1971 任务游戏 显示, 分配游戏的核心估算非常符合LP- 放松游戏的双轨的最佳解决方案 。 以此为基础, Deng et alcite{ Deng1999algorthms} 提供了一个总框架, 它为几个基本的组合游戏产生相似的特征。 有意思的是, 它们的框架不适用于上述最后两个游戏的二次游戏。 。 反过来, 我们目前对游戏的核心解释中的一些解释 也是两个游戏的双重解释 。