Due to high annotation costs making the best use of existing human-created training data is an important research direction. We, therefore, carry out a systematic evaluation of transferability of BERT-based neural ranking models across five English datasets. Previous studies focused primarily on zero-shot and few-shot transfer from a large dataset to a dataset with a small number of queries. In contrast, each of our collections has a substantial number of queries, which enables a full-shot evaluation mode and improves reliability of our results. Furthermore, since source datasets licences often prohibit commercial use, we compare transfer learning to training on pseudo-labels generated by a BM25 scorer. We find that training on pseudo-labels -- possibly with subsequent fine-tuning using a modest number of annotated queries -- can produce a competitive or better model compared to transfer learning. Yet, it is necessary to improve the stability and/or effectiveness of the few-shot training, which, sometimes, can degrade performance of a pretrained model.


翻译:由于说明成本高,最佳利用现有人类创造的培训数据是一项重要的研究方向。因此,我们系统地评估了基于BERT的神经等级模型在五个英国数据集中的可转让性。以前的研究主要侧重于零点和几发从大型数据集转移到数据集,但查询数量较少。相比之下,我们收集的每份都有大量的查询,使得能够有一个全速评价模式,并提高我们结果的可靠性。此外,由于源数据集许可证常常禁止商业使用,我们把学习与一个BB25计分器生成的假标签培训进行比较。我们发现,假标签培训 -- -- 可能随后使用少量附加说明的查询进行微调 -- -- 能够产生一种竞争性或更好的模型,与转移学习相比。然而,有必要提高少发培训的稳定性和(或)效力,这种培训有时会降低预设模型的性能。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Github项目推荐 | awesome-bert:BERT相关资源大列表
AI研习社
27+阅读 · 2019年2月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Arxiv
5+阅读 · 2018年1月18日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Github项目推荐 | awesome-bert:BERT相关资源大列表
AI研习社
27+阅读 · 2019年2月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员