We revisit the algorithmic problem of finding a triangle in a graph: We give a randomized combinatorial algorithm for triangle detection in a given $n$-vertex graph with $m$ edges running in $O(n^{7/3})$ time, or alternatively in $O(m^{4/3})$ time. This may come as a surprise since it invalidates several conjectures in the literature. In particular, - the $O(n^{7/3})$ runtime surpasses the long-standing fastest algorithm for triangle detection based on matrix multiplication running in $O(n^\omega) = O(n^{2.372})$ time, due to Itai and Rodeh (1978). - the $O(m^{4/3})$ runtime surpasses the long-standing fastest algorithm for triangle detection in sparse graphs based on matrix multiplication running in $O(m^{2\omega/(\omega+1)})= O(m^{1.407})$ time due to Alon, Yuster, and Zwick (1997). - the $O(n^{7/3})$ time algorithm for triangle detection leads to a $O(n^{25/9} \log{n})$ time combinatorial algorithm for $n \times n$ Boolean matrix multiplication, by a reduction of V. V. Williams and R.~R.~Williams (2018).This invalidates a conjecture of A.~Abboud and V. V. Williams (FOCS 2014). - the $O(m^{4/3})$ runtime invalidates a conjecture of A.~Abboud and V. V. Williams (FOCS 2014) that any combinatorial algorithm for triangle detection requires $m^{3/2 -o(1)}$ time. - as a direct application of the triangle detection algorithm, we obtain a faster exact algorithm for the $k$-clique problem, surpassing an almost $40$ years old algorithm of Ne{\v{s}}et{\v{r}}il and Poljak (1985). This result strongly disproves the combinatorial $k$-clique conjecture. - as another direct application of the triangle detection algorithm, we obtain a faster exact algorithm for the \textsc{Max-Cut} problem, surpassing an almost $20$ years old algorithm of R.~R.~Williams (2005).


翻译:暂无翻译

0
下载
关闭预览

相关内容

IEEE计算机科学基础研讨会(FOCS)是由IEEE计算机学会计算数学基础技术委员会(TCMF)主办的旗舰会议,涵盖了广泛的理论计算机科学。它每年秋季举行,并与每年春季举行的由ACM SIGACT赞助的姊妹会议——计算理论年度研讨会(STOC)配对。官网链接:http://ieee-focs.org/
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
143+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员