Road-boundary detection is important for autonomous driving. For example, it can be used to constrain vehicles running on road areas, which ensures driving safety. Compared with on-line road-boundary detection using on-vehicle cameras/Lidars, off-line detection using aerial images could alleviate the severe occlusion issue. Moreover, the off-line detection results can be directly used to annotate high-definition (HD) maps. In recent years, deep-learning technologies have been used in off-line detection. But there is still lacking a publicly available dataset for this task, which hinders the research progress in this area. So in this paper, we propose a new benchmark dataset, named \textit{Topo-boundary}, for off-line topological road-boundary detection. The dataset contains 21,556 $1000\times1000$-sized 4-channel aerial images. Each image is provided with 8 training labels for different sub-tasks. We also design a new entropy-based metric for connectivity evaluation, which could better handle noises or outliers. We implement and evaluate 3 segmentation-based baselines and 5 graph-based baselines using the dataset. We also propose a new imitation-learning-based baseline which is enhanced from our previous work. The superiority of our enhancement is demonstrated from the comparison. The dataset and our-implemented codes for the baselines are available at https://sites.google.com/view/topo-boundary.
翻译:路外探测对于自主驾驶很重要。 例如, 它可以用来限制在路区运行的车辆, 这可以确保驾驶安全。 与使用车载摄像头/ Lidars 进行在线路边探测相比, 使用航空图像进行离线检测可以缓解严重的封闭性问题。 此外, 离线检测结果可以直接用于注释高清晰度( HD) 地图。 近年来, 离线检测使用了深学习技术。 但是, 仍然缺乏用于此任务的公开数据集, 这会阻碍这一领域的研究进展。 因此, 在本文中, 我们提出一个新的基准数据集, 名为\ textit{topo- marty}, 用于离线式上层检测。 该数据集包含21, 556, 100 times- 4chanel 大小的空中图像。 每张图像都配有8个用于不同子任务探测的培训标签 。 我们还设计了一个新的基于英特罗比- 的连接性测试指标, 它可以更好地处理噪音或超出此领域的研究进展。 我们用3个分级的基线来测试我们的数据升级标准 。 我们使用和升级的升级基准 。 正在测试 演示前的更新的基线 。 我们的升级的升级的升级的升级的升级的基线和升级的基线 。 。 正在演示的升级的升级的升级的升级的校基 。 我们的升级的升级的升级的升级的基线和升级的升级的升级的校基 。