In cone-beam X-ray transmission imaging, perspective deformation causes difficulty in direct, accurate geometric assessments of anatomical structures. In this work, the perspective deformation correction problem is formulated and addressed in a framework using two complementary (180{\deg}) views. The complementary view setting provides a practical way to identify perspectively deformed structures by assessing the deviation between the two views. It also provides bounding information and reduces uncertainty for learning perspective deformation. Two representative networks Pix2pixGAN and TransU-Net for correcting perspective deformation are investigated. Experiments on numerical bead phantom data demonstrate the advantage of complementary views over orthogonal views or a single view. They show that Pix2pixGAN as a fully convolutional network achieves better performance in polar space than Cartesian space, while TransU-Net as a transformer-based hybrid network achieves comparable performance in Cartesian space to polar space. Further study demonstrates that the trained model has certain tolerance to geometric inaccuracy within calibration accuracy. The efficacy of the proposed framework on synthetic projection images from patients' chest and head data as well as real cadaver CBCT projection data and its robustness in the presence of bulky metal implants and surgical screws indicate the promising aspects of future real applications.


翻译:在Cone-beam X光传输成像中,观点变形导致难以对解剖结构进行直接、准确的几何评估。在这项工作中,观点变形修正问题是在使用两种互补观点(180xdeg})形成和解决的框架中拟订和解决的。补充观点设置提供了一种切实可行的方法,通过评估两种观点之间的偏差来查明观点变形的结构,还提供了约束信息,并减少了学习变形的不确定性。调查了两个具有代表性的网络Pix2pixGAN和 TransU-Net,以纠正反形观点。数值对方形数据的实验显示了对正方观点或单一观点的互补观点的优势。它们表明,Pix2pixGAN作为完全同化的网络,在极地空间比Cartesian空间的完全相形变形化的网络有更好的性能,而TransU-Net作为以变异器为基础的混合网络在Cartesia空间到极地空间的性能。进一步研究表明,经过训练的模型在校准精确度范围内对地球测量不准确性。关于病人心动观点的合成预测框架框架的功效框架的功效显示,以及未来的金属外心动模型数据显示,其真实的准确性导数据显示。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
18+阅读 · 2021年3月16日
Deep learning for cardiac image segmentation: A review
Arxiv
21+阅读 · 2019年11月9日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员