Population protocols model information spreading and computation in network systems where pairwise node exchanges are determined by an external random scheduler and nodes have small memory. Most of the population protocols in the literature assume that the participating $n$ nodes are honest. Such an assumption may not be, however, accurate for large-scale systems of small devices. Hence, in this work, we study population protocols in a setting where up to $f$ nodes can be Byzantine. We examine the majority (binary) consensus problem against different levels of adversary strengths, ranging from the Full Byzantine adversary that has complete knowledge of all the node states to the Weak Content-Oblivious Byzantine adversary that has only knowledge about which exchanges take place. We also take into account Dynamic vs Static node corruption by the adversary. We give lower bounds that require any algorithm solving the majority consensus to have initial difference $d = \Omega(f + 1)$ for the tally between the two proposed values, which holds for both the Full Static and Weak Dynamic adversaries. We then present an algorithm that solves the majority consensus problem and tolerates $f \leq n / c$ Byzantine nodes, for some constant $c>0$, with $d = \Omega(f + \sqrt{n \log n})$ and $O(\log^3 n)$ parallel time steps, using $O(\log^3 n)$ states per node. We also give an alternative algorithm, with the same asymptotic performance, for $d = \Omega(\min\{f \log^2 n + 1,n\})$. Finally, we combine both algorithms into one using a new robust distributed common coin. The only other known previous work on Byzantine-resilient population protocols tolerates up to $f = o(\sqrt n)$ faulty nodes and was analyzed against a Static adversary; hence, our protocols significantly improve fault-tolerance by an $\omega(\sqrt n)$ factor and all of them work correctly against a stronger Dynamic adversary.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
38+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月16日
Arxiv
0+阅读 · 2024年3月15日
Arxiv
0+阅读 · 2024年3月14日
Arxiv
0+阅读 · 2024年3月13日
Arxiv
0+阅读 · 2024年3月13日
Arxiv
0+阅读 · 2024年3月13日
Arxiv
10+阅读 · 2021年3月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年3月16日
Arxiv
0+阅读 · 2024年3月15日
Arxiv
0+阅读 · 2024年3月14日
Arxiv
0+阅读 · 2024年3月13日
Arxiv
0+阅读 · 2024年3月13日
Arxiv
0+阅读 · 2024年3月13日
Arxiv
10+阅读 · 2021年3月30日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
38+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员