Many minimally invasive interventional procedures still rely on 2D fluoroscopic imaging. Generating a patient-specific 3D model from these X-ray projection data would allow to improve the procedural workflow, e.g. by providing assistance functions such as automatic positioning. To accomplish this, two things are required. First, a statistical human shape model of the human anatomy and second, a differentiable X-ray renderer. In this work, we propose a differentiable renderer by deriving the distance travelled by a ray inside mesh structures to generate a distance map. To demonstrate its functioning, we use it for simulating X-ray images from human shape models. Then we show its application by solving the inverse problem, namely reconstructing 3D models from real 2D fluoroscopy images of the pelvis, which is an ideal anatomical structure for patient registration. This is accomplished by an iterative optimization strategy using gradient descent. With the majority of the pelvis being in the fluoroscopic field of view, we achieve a mean Hausdorff distance of 30 mm between the reconstructed model and the ground truth segmentation.
翻译:许多侵入性最小的干预程序仍然依赖于 2D 含氟光学成像。 从这些X射线投影数据生成一个针对病人的 3D 模型可以改进程序工作流程, 例如通过提供自动定位等辅助功能。 要做到这一点, 需要两件事。 首先, 人类解剖的统计人类形状模型, 第二, 一个不同的X射线成像器。 在这项工作中, 我们提出一个可区别的投影器, 通过在网状结构内通过射线绘制远距图。 为了显示它的功能, 我们用它模拟人类形状模型的X射线图像。 然后我们通过解决反向问题来展示它的应用, 即将3D 模型从真实的 2D 氟镜像中重建出来, 这是用于病人注册的理想解剖结构 。 这是通过使用渐变的迭代优化战略完成的 。 由于波子大部分位于含氟的外观领域, 我们实现了在重建模型和地面真相分割之间平均30毫米的Hausdorff 距离 。