Data cleaning, architecture, and loss function design are important factors contributing to high-performance face recognition. Previously, the research community tries to improve the performance of each single aspect but failed to present a unified solution on the joint search of the optimal designs for all three aspects. In this paper, we for the first time identify that these aspects are tightly coupled to each other. Optimizing the design of each aspect actually greatly limits the performance and biases the algorithmic design. Specifically, we find that the optimal model architecture or loss function is closely coupled with the data cleaning. To eliminate the bias of single-aspect research and provide an overall understanding of the face recognition model design, we first carefully design the search space for each aspect, then a comprehensive search method is introduced to jointly search optimal data cleaning, architecture, and loss function design. In our framework, we make the proposed comprehensive search as flexible as possible, by using an innovative reinforcement learning based approach. Extensive experiments on million-level face recognition benchmarks demonstrate the effectiveness of our newly-designed search space for each aspect and the comprehensive search. We outperform expert algorithms developed for each single research track by large margins. More importantly, we analyze the difference between our searched optimal design and the independent design of the single factors. We point out that strong models tend to optimize with more difficult training datasets and loss functions. Our empirical study can provide guidance in future research towards more robust face recognition systems.


翻译:数据清理、架构和损失函数设计是有助于高性能面部识别的重要因素。 之前, 研究界试图改善每个方面的业绩, 但未能就所有三个方面的最佳设计的联合搜索提出统一的解决办法。 在本文中, 我们第一次发现这些方面是紧密地相互连接的。 优化每个方面的设计实际上极大地限制了工作表现和对算法设计偏见。 具体地说, 我们发现最佳模型结构或损失功能与数据清理密切相关。 为了消除单层研究的偏差,并全面理解面部识别模型的设计,我们首先仔细设计每个方面的搜索空间,然后采用全面搜索方法,共同寻找最佳的数据清理、架构和损失函数设计。 在我们的框架内, 我们尽可能地使拟议的全面搜索尽可能灵活, 使用创新的强化学习方法。 百万层面部的确认基准实验表明我们新设计的面部搜索空间的有效性, 以及全面搜索。 我们为每个单一研究轨道开发的外观专家算法, 以大的边距为基础, 然后再为不同的研究方向。 更重要的是, 我们用更精确的模型来分析我们最难的模型设计, 来分析我们最难得的模型的设计。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2021年7月20日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
15+阅读 · 2020年2月6日
Arxiv
13+阅读 · 2019年11月14日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
14+阅读 · 2021年7月20日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
15+阅读 · 2020年2月6日
Arxiv
13+阅读 · 2019年11月14日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员