The goal of face attribute editing is altering a facial image according to given target attributes such as hair color, mustache, gender, etc. It belongs to the image-to-image domain transfer problem with a set of attributes considered as a distinctive domain. There have been some works in multi-domain transfer problem focusing on facial attribute editing employing Generative Adversarial Network (GAN). These methods have reported some successes but they also result in unintended changes in facial regions - meaning the generator alters regions unrelated to the specified attributes. To address this unintended altering problem, we propose a novel GAN model which is designed to edit only the parts of a face pertinent to the target attributes by the concept of Complementary Attention Feature (CAFE). CAFE identifies the facial regions to be transformed by considering both target attributes as well as complementary attributes, which we define as those attributes absent in the input facial image. In addition, we introduce a complementary feature matching to help in training the generator for utilizing the spatial information of attributes. Effectiveness of the proposed method is demonstrated by analysis and comparison study with state-of-the-art methods.


翻译:面部属性编辑的目标正在根据发色、胡子、性别等特定目标属性改变面部图像图像。 它属于图像到图像域传输问题, 其属性被视为一个特殊域。 在多域传输问题上已经做了一些工作, 重点是面部属性编辑, 使用 General Adversarial 网络( GAN) 。 这些方法已经报告了一些成功, 但也导致面部区域出现意外变化 - 意指生成器改变与指定属性无关的区域。 为了解决这一意外变化的问题, 我们提议了一个新颖的GAN模型, 设计该模型仅用于根据补充关注特征概念编辑与目标属性相关的面部部分。 CAFE 确定了要通过同时考虑目标属性和互补属性来改变的面部区域, 我们将这些属性定义为输入面部图像中缺少的属性。 此外, 我们引入一个补充性匹配功能, 帮助培训生成器使用空间属性信息。 通过分析和比较研究, 显示拟议方法的有效性。

0
下载
关闭预览

相关内容

Attention机制最早是在视觉图像领域提出来的,但是真正火起来应该算是google mind团队的这篇论文《Recurrent Models of Visual Attention》[14],他们在RNN模型上使用了attention机制来进行图像分类。随后,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用类似attention的机制在机器翻译任务上将翻译和对齐同时进行,他们的工作算是是第一个提出attention机制应用到NLP领域中。接着类似的基于attention机制的RNN模型扩展开始应用到各种NLP任务中。最近,如何在CNN中使用attention机制也成为了大家的研究热点。下图表示了attention研究进展的大概趋势。
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
【KDD2020教程】多模态网络表示学习
专知会员服务
130+阅读 · 2020年8月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月7日
Adversarial Metric Attack for Person Re-identification
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
【KDD2020教程】多模态网络表示学习
专知会员服务
130+阅读 · 2020年8月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员