We investigate a generalized framework to estimate a latent low-rank plus sparse tensor, where the low-rank tensor often captures the multi-way principal components and the sparse tensor accounts for potential model mis-specifications or heterogeneous signals that are unexplainable by the low-rank part. The framework is flexible covering both linear and non-linear models, and can easily handle continuous or categorical variables. We propose a fast algorithm by integrating the Riemannian gradient descent and a novel gradient pruning procedure. Under suitable conditions, the algorithm converges linearly and can simultaneously estimate both the low-rank and sparse tensors. The statistical error bounds of final estimates are established in terms of the gradient of loss function. The error bounds are generally sharp under specific statistical models, e.g., the robust tensor PCA and the community detection in hypergraph networks with outlier vertices. Moreover, our method achieves non-trivial error bounds for heavy-tailed tensor PCA whenever the noise has a finite $2+\varepsilon$ moment. We apply our method to analyze the international trade flow dataset and the statistician hypergraph co-authorship network, both yielding new and interesting findings.


翻译:我们调查了一个通用框架,以估计潜伏的低位和稀有的沙粒,低位的沙粒往往会捕捉多路主要部件,而稀有的沙粒则会捕捉低位部分无法解释的潜在模型错误特性或混杂信号。这个框架灵活地涵盖线性和非线性模型,可以容易地处理连续或绝对变量。我们提出一个快速算法,将里曼梯度的底部和新的梯度调整程序结合起来。在适当的条件下,算法线性地聚集在一起,同时估计低位和稀有的沙粒。最后估计的统计误差界限是按损失函数的梯度确定的。在具体的统计模型下,例如,强势的高压五氯苯甲醚以及带有外部脊椎的超光谱网络中的社区检测,这些误差一般都是尖锐的。此外,我们的方法在噪音达到限定值为2 ⁇ varepslon的时,就会为重尾部的沙粒子五氯苯甲醚带来非三角误差。我们采用的方法来分析国际贸易流动数据设置和海拔的海拔联合数据网络。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
220+阅读 · 2020年6月5日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员