We establish asymptotic properties of $M$-estimators, defined in terms of a contrast function and observations from a continuous-time locally stationary process. Using the stationary approximation of the sequence, $\theta$-weak dependence, and hereditary properties, we give sufficient conditions on the contrast function that ensure consistency and asymptotic normality of the $M$-estimator. As an example, we obtain consistency and asymptotic normality of a localized least squares estimator for observations from a sequence of time-varying L\'evy-driven Ornstein-Uhlenbeck processes. Furthermore, for a sequence of time-varying L\'evy-driven state space models, we show consistency of a localized Whittle estimator and an $M$-estimator that is based on a quasi maximum likelihood contrast. Simulation studies show the applicability of the estimation procedures.
翻译:我们根据对比函数和连续时间当地固定过程的观测结果来定义$M$估算器的无症状属性。我们使用序列的固定近似值、$theta$-weak依赖性和遗传属性,对对比函数给予足够的条件,以确保$M美元估算器的一致性和无症状的正常性。举例来说,我们获得一个本地最小方位估测器的一致性和无症状的正常性,用于从时间变化的L\'evy驱动的Ornstein-Uhlenbeck过程进行观测。此外,对于时间变化的L\'evy-hlenbeck空间模型的序列,我们显示了一个本地的Whitttt 估测器和一个基于尽可能最大可能性对比的$M$估算器的一致性。模拟研究显示了估算程序的可适用性。