We propose and demonstrate a fast, robust method for using satellite images to localize an Unmanned Aerial Vehicle (UAV). Previous work using satellite images has large storage and computation costs and is unable to run in real time. In this work, we collect Google Earth (GE) images for a desired flight path offline and an autoencoder is trained to compress these images to a low-dimensional vector representation while retaining the key features. This trained autoencoder is used to compress a real UAV image, which is then compared to the precollected, nearby, autoencoded GE images using an inner-product kernel. This results in a distribution of weights over the corresponding GE image poses and is used to generate a single localization and associated covariance to represent uncertainty. Our localization is computed in 1% of the time of the current standard and is able to achieve a comparable RMSE of less than 3m in our experiments, where we robustly matched UAV images from six runs spanning the lighting conditions of a single day to the same map of satellite images.
翻译:我们提出并展示了一种快速、稳健的方法来使用卫星图像使无人驾驶航空飞行器(UAV)本地化。以前使用卫星图像的工作需要大量存储和计算成本,无法实时运行。在这项工作中,我们收集谷歌地球(GE)图像,以建立理想的离线飞行路径,并训练一个自动编码器将这些图像压缩成低维矢量表示法,同时保留关键特征。这个经过培训的自动编码器用来压缩真正的UAV图像,然后用一个内部产品内核来比较预先收集的、附近的、自动编码的GE图像。这导致对相应的GE图像外壳的重量分布,并用来产生单一的本地化和相关共变以代表不确定性。我们的本地化在目前标准的1%时间内计算,并且能够在我们的实验中实现一个不到3m的可比的RMSE,在那里我们从一个单一天的照明条件的六次运行到同一卫星图像地图的UAVA图像得到严格匹配。