Spiking neural networks (SNN) are considered as a perspective basis for performing all kinds of learning tasks - unsupervised, supervised and reinforcement learning. Learning in SNN is implemented through synaptic plasticity - the rules which determine dynamics of synaptic weights depending usually on activity of the pre- and post-synaptic neurons. Diversity of various learning regimes assumes that different forms of synaptic plasticity may be most efficient for, for example, unsupervised and supervised learning, as it is observed in living neurons demonstrating many kinds of deviations from the basic spike timing dependent plasticity (STDP) model. In the present paper, we formulate specific requirements to plasticity rules imposed by unsupervised learning problems and construct a novel plasticity model generalizing STDP and satisfying these requirements. This plasticity model serves as main logical component of the novel supervised learning algorithm called SCoBUL (Spike Correlation Based Unsupervised Learning) proposed in this work. We also present the results of computer simulation experiments confirming efficiency of these synaptic plasticity rules and the algorithm SCoBUL.


翻译:在SNN的学习是通过合成可塑性规则进行的,这些规则决定合成重量的动态,这通常取决于合成前和后神经神经的活性。各种学习制度的多样性假定,不同形式的合成可塑性对于例如未经监督和监督的学习最为有效,因为在活的神经人身上观察到,与基本峰值依赖的可塑性模式(STDP)有多种偏离。在本文件中,我们为未受监督的学习问题所强加的可塑性规则制定了具体要求,并建立了一个新的可塑性模型,对STDP加以概括并满足这些要求。这种塑料模型是这项工作中提议的新型受监督学习算法的主要逻辑组成部分,该算法称为SCoBUL(Spoppike Correrlation Basyd Unurvey Learning)。我们还介绍了计算机模拟实验的结果,确认这些合成可塑性规则的效率以及SCOBUL的算法。

0
下载
关闭预览

相关内容

【IJCAI】大规模可扩展深度学习,82页ppt
专知会员服务
27+阅读 · 2021年1月10日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
57+阅读 · 2020年5月9日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
0+阅读 · 2022年1月14日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员