In arXiv:1811.04313, a definition of determinant is formalized in the bounded arithmetic $VNC^{2}$. Following the presentation of [Gathen, 1993], we can formalize a definition of matrix rank in the same bounded arithmetic. In this article, we define a bounded arithmetic $LAPPD$, and show that $LAPPD$ seems to be a natural arithmetic theory formalizing the treatment of rank function following Mulmuley's algorithm. Furthermore, we give a formalization of rank in $VNC^{2}$ by interpreting $LAPPD$ by $VNC^{2}$.
翻译:暂无翻译