We propose a second order exponential scheme suitable for two-component coupled systems of stiff evolutionary advection--diffusion--reaction equations in two and three space dimensions. It is based on a directional splitting of the involved matrix functions, which allows for a simple yet efficient implementation through the computation of small-sized exponential-like functions and tensor-matrix products. The procedure straightforwardly extends to the case of an arbitrary number of components and to any space dimension. Several numerical examples in 2D and 3D with physically relevant (advective) Schnakenberg, FitzHugh--Nagumo, DIB, and advective Brusselator models clearly show the advantage of the approach against state-of-the-art techniques.
翻译:暂无翻译