We consider the problem of aggregating the judgements of a group of experts to form a single prior distribution representing the judgements of the group. We develop a Bayesian hierarchical model to reconcile the judgements of the group of experts based on elicited quantiles for continuous quantities and probabilities for one-off events. Previous Bayesian reconciliation methods have not been used widely, if at all, in contrast to pooling methods and consensus-based approaches. To address this we embed Bayesian reconciliation within the probabilistic Delphi method. The result is to furnish the outcome of the probabilistic Delphi method with a direct probabilistic interpretation, with the resulting prior representing the judgements of the decision maker. We can use the rationales from the Delphi process to group the experts for the hierarchical modelling. We illustrate the approach with applications to studies evaluating erosion in embankment dams and pump failures in a water pumping station, and assess the properties of the approach using the TU Delft database of expert judgement studies. We see that, even using an off-the-shelf implementation of the approach, it out-performs individual experts, equal weighting of experts and the classical method based on the log score.
翻译:暂无翻译