Object encoding and identification is crucial for many robotic tasks such as autonomous exploration and semantic relocalization. Existing works heavily rely on the tracking of detected objects but difficult to recall revisited objects precisely. In this paper, we propose a novel object encoding method based on a graph of key-points. To be robust to the number of key-points detected, we propose a feature sparse encoding and object dense encoding method to ensure that each key-point can only affect a small part of the object descriptors, leading it robust to viewpoint changes, scaling, occlusion, and even object deformation. In the experiments, we show that it achieves superior performance for object identification than the state-of-the art algorithm and is able to provide reliable semantic relocalization. It is a plug-and-play module and we expect that it will play an important role in the robotic applications.
翻译:对象编码和识别对于自动勘探和语义再定位等许多机器人任务至关重要。 现有的工程在很大程度上依赖于对已检测到的物体的跟踪, 但很难精确地回忆重新审视的物体。 在本文中, 我们根据一个关键点图, 提出一个新的对象编码方法 。 要对所检测到的关键点数保持稳健, 我们提议了一个奇特的稀疏编码和对象密度编码方法, 以确保每个关键点只能够影响物体描述器的一小部分, 导致它能够对视图的改变、 缩放、 隔离甚至对象变形 。 在实验中, 我们显示它比艺术状态算法具有更高的物体识别性能, 并且能够提供可靠的语义再定位。 这是一个插和动作模块, 我们期望它在机器人应用中能发挥重要作用 。