Suppose that a cascade (e.g., an epidemic) spreads on an unknown graph, and only the infection times of vertices are observed. What can be learned about the graph from the infection times caused by multiple distinct cascades? Most of the literature on this topic focuses on the task of recovering the entire graph, which requires $\Omega ( \log n)$ cascades for an $n$-vertex bounded degree graph. Here we ask a different question: can the important parts of the graph be estimated from just a few (i.e., constant number) of cascades, even as $n$ grows large? In this work, we focus on identifying super-spreaders (i.e., high-degree vertices) from infection times caused by a Susceptible-Infected process on a graph. Our first main result shows that vertices of degree greater than $n^{3/4}$ can indeed be estimated from a constant number of cascades. Our algorithm for doing so leverages a novel connection between vertex degrees and the second derivative of the cumulative infection curve. Conversely, we show that estimating vertices of degree smaller than $n^{1/2}$ requires at least $\log(n) / \log \log (n)$ cascades. Surprisingly, this matches (up to $\log \log n$ factors) the number of cascades needed to learn the \emph{entire} graph if it is a tree.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员