Incorporating knowledge graphs (KGs) as side information in recommendation has recently attracted considerable attention. Despite the success in general recommendation scenarios, prior methods may fall short of performance satisfaction for the cold-start problem in which users are associated with very limited interactive information. Since the conventional methods rely on exploring the interaction topology, they may however fail to capture sufficient information in cold-start scenarios. To mitigate the problem, we propose a novel Knowledge-aware Neural Networks with Personalized Feature Referencing Mechanism, namely KPER. Different from most prior methods which simply enrich the targets' semantics from KGs, e.g., product attributes, KPER utilizes the KGs as a "semantic bridge" to extract feature references for cold-start users or items. Specifically, given cold-start targets, KPER first probes semantically relevant but not necessarily structurally close users or items as adaptive seeds for referencing features. Then a Gated Information Aggregation module is introduced to learn the combinatorial latent features for cold-start users and items. Our extensive experiments over four real-world datasets show that, KPER consistently outperforms all competing methods in cold-start scenarios, whilst maintaining superiority in general scenarios without compromising overall performance, e.g., by achieving 0.81%-16.08% and 1.01%-14.49% performance improvement across all datasets in Top-10 recommendation.
翻译:将知识图表( KGs) 作为建议中的侧边信息最近引起了相当的关注。 尽管在一般性建议的情景中取得了成功, 先前的方法可能无法满足用户与非常有限的互动信息相关的冷启动问题。 由于常规方法依赖于探索互动的地形学, 但是它们可能无法在冷启动的情景中捕捉到足够的信息。 为了缓解问题, 我们建议建立一个具有个性化功能参照机制的新型知识智能神经网络, 即 KPER 。 与大多数先前的方法不同, 这些方法只是从 KGs 中丰富目标的语义, 例如产品属性, KPER 利用 KGs作为“ 静态桥梁” 来为冷启动用户或项目提取特征引用。 具体地说, 由于冷启动目标, KPER 首次探索具有语义相关性但不一定在结构上贴近的用户或项目, 以适应性能种子来查找。 然后, 引入了一个 Gated 信息聚合模块, 来学习冷启动用户和项目的组合潜在特性。 我们在四个真实世界数据集中进行的广泛实验, 例如, KPER 持续地在总体性优度情景中完成% 和整个性优度改进了整个业绩, 。